USN

Third Semester B.E. Degree Examination, December 2010 Advanced Mathematics – I

Time: 3 hrs.

Max. Marks:100

(06 Marks)

Note: Answer any FIVE full questions.

1 a. Find the n^{th} derivative of log(ax + b).

b. Find the nth derivative of $\frac{x}{(1+3x+2x^2)}$. (07 Marks)

c. If $x = \sin t$ and $y = \cos mt$, prove that $(1 - x^2) y_{n+2} - (2n + 1) xy_{n+1} + (m^2 - n^2) y_n = 0$.

(07 Marks)

2 a. Show that the following pair of curves intersect each other orthogonally.

$$r = a(1 + \sin \theta)$$
 and $r = a(1 - \sin \theta)$. (06 Marks)

b. Find the pedal equation of the curve $\frac{2a}{r} = 1 + \cos\theta$. (07 Marks)

c. Find the first five terms of the Maclaurin series of $f(x) = \log \sec x$. (07 Marks)

3 a. If
$$u = e^{ax - by} \sin(ax + by)$$
, show that $b \frac{\partial u}{\partial x} - \frac{\partial u}{\partial y} = 2abu$. (06 Marks)

b. If
$$u = \sqrt{x^2 + y^2}$$
 and $x^3 + y^3 + 3axy = 5a^2$, find $\frac{du}{dx}$ when $x = y = a$. (07 Marks)

c. If z = f(x, y), where $x = r \cos \theta$ and $y = r \sin \theta$, show that, $\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta}\right)^2$ (07 Marks)

4 a. Obtain the reduction formula for $\int \cos^n x dx$, where n is a positive integer. (06 Marks)

b. Show that
$$\int_{0}^{\pi} \frac{\sqrt{1-\cos\theta}}{1+\cos\theta} \sin^2\theta \ d\theta = \frac{8\sqrt{2}}{3}.$$
 (07 Marks)

c. Evaluate
$$\int_{0}^{a} \int_{0}^{\sqrt{a^2-x^2}} x^2 y \, dy \, dx.$$
 (07 Marks)

5 a. Prove that $|\frac{1}{2} = \sqrt{\pi}$. (06 Marks)

b. Show that
$$\int_{0}^{\frac{\pi}{2}} \sqrt{\sin \theta} \, d\theta \times \int_{0}^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{\sin \theta}} = \pi.$$
 (07 Marks)

c. Prove that
$$\beta(m,n) = \frac{m n}{m+n}$$
. (07 Marks)

6 a. Solve
$$(e^4 + 1) \cos x \, dx + e^4 \sin x \, dy = 0$$
. (06 Marks)

b. Solve
$$(x \tan \frac{y}{x} - y \sec^2 \frac{y}{x}) ds + x \sec^2 (\frac{y}{x}) dy = 0$$
. (07 Marks)

c. Solve
$$(x + \tan y) dy = \sin 2y dx$$
. (07 Marks)

MATDIP301

7 a. Solve
$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = e^{-2x}$$
. (06 Marks)

b. Solve
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} - 5y = \cos 3x$$
. (07 Marks)
c. Solve $(D^2 - 5D + 1)y = 1 + x^2$. (07 Marks)

c. Solve
$$(D^2 - 5D + 1)y = 1 + x^2$$
. (07 Marks)

8 a. Prove that
$$(1 + \cos \theta + i \sin \theta)^n + (1 + \cos \theta - i \sin \theta)^n = 2^{n+1} \cos^n \left(\frac{\theta}{2}\right) \cos\left(\frac{n\theta}{2}\right)$$
. (06 Marks)

- (07 Marks)
- b. Use Demoivre's theorem and solve the equation x⁴ x³ + x² + 1 = 0.
 c. Expand cos⁸ θ in a series of cosine of multiples of θ. (07 Marks)